ISUAL Imager

Stewart Harris
Outline

• Imager technical objectives
• Detector design and specification
• CCD clocking and readout
• Mechanical layout / detailed description
• Electronic design and interface
• Functional parameters
Imager Objectives

• Provide high temporal and spatial resolution imaging of Sprites and other emissions related to lightning storms

• Provide imaging of aurora and airglow
Optical Specifications

- Filters
 - 1: 670 - 750 nm
 - 2: 762 nm
 - 3: 427.8 nm
 - 4: 630 nm
 - 5: 557.7 nm
 - 6: 732 nm
Optical Specifications, con’t.

• Lens
 – Focal length: 62.5 mm
 – Focal ratio: f/1.56
 – Image format: 25 mm diagonal
 – Spectral band: 420 - 780 nm
Detector specifications

• Image Intensifier
 – Type: 25 mm Gen II
 – Manufacturer: DEP
 – Photocathode: Super S25, 6 mm quartz window
 – MCP: Single, 100 ns gating
 – Phosphor: P46, fiber optic window
 2 µs decay time constant

• Fiber Optic Taper
 – Input diameter 25 mm
 – Output diameter 14 mm
 – Ratio 1.8 : 1
Detector specifications, con’t.

• CCD
 – Type: 1024 x 1024, frame transfer
 – Manufacturer: Dalsa, IA-D4
 – Antiblooming: Vertical anti-blooming (VAB)
 – Primary mode: 512 x 80 (binned 2x2 and masked)
 – Pixel size (unbinned): 12 µm x 12 µm
 – Pixel size (binned): 24 µm x 24 µm
 – # of Outputs: 2
 – Pixel readout rate: 8 MHz
CCD Active Area Masking

- Imaging Earth Limb
 - Narrow, 6:1 Aspect Ratio
 - CCD Active Area
 - Mask applied to f/o window
 - Size: 1024 x 170 (unbinned)
 - Size: 512 x 85 (binned)
 - FOV: 20° x 3°

Top view of Dalsa CCD with f/o window
CCD Camera Imaging Modes

- Sprite Burst Mode
- Sprite Continuous Mode
- Aurora Mode
Sprite Burst Mode

- **Highest temporal resolution**
 - Frame interval as low as 1 ms
 - Frame interval largely set by exposure duration, EXP = 1~100ms

- **Triggered by event, take N images, N<12**
 - Images stacked in CCD vertical storage register

- **Readout of data after image acquisition**
 - Data stored in memory

- **Dead time between events**
 - Dead time during image readout
 - Dead time can be minimized by changing N
Sprite Burst Mode Timing

Begin acquisition of N images at leading edge of Event Trigger

Image readout time \(\sim N \cdot T_{\text{readout}} \)

\[T_{\text{frame}} \]

\[N \cdot T_{\text{frame}} \]

\[T_{\text{readout}} \]
Sprite Burst Mode Event Timing

- T_{frame}
 - Period of one Sprite frame depends on Exposure duration, EXP
 - EXP can vary from 1 ~ 100 ms

- T_{readout}
 - Time to readout one frame

- For $F_{\text{vertical}} = 500$ kHz and $F_{\text{horizontal}} = 8$ MHz
 - $T_{\text{readout}} \sim 6$ ms

- No Image Acquisition during readout
 - Dead time $\sim N \cdot T_{\text{readout}}$, where $N =$ number of images acquired
Sprite Continuous Mode

- CCD camera is continuously taking images
 - Image data is readout simultaneously with each image exposure
 - Exposure duration of 1~100 ms
 - Image data is continuously stored in Memory circular buffer
 - Event trigger simply causes a new buffer allocation

- No Dead Time between events
 - But temporal resolution reduced to ~ 6 ms
Sprite Continuous Mode Clocking

Image Area

Storage Area

Expose Image

Shift & Read image from Storage Area

AND

Shift Image & Storage Areas

Repeat Cycle

Transfer another image into Storage Area

Note: Storage area is shifted twice as often
Sprite Continuous Mode Timing

Event occurs

Data for that event starts on 8th frame afterwards

$9 \cdot T_{\text{frame}}$

First frame of event available in memory
Continuous Mode Event Timing

- T_{frame}
 - Period of one Sprite frame depends on Exposure duration, EXP, and the time to readout one frame, whichever is longer

- For $F_{\text{vertical}} = 500 \text{ kHz}$ and $F_{\text{horizontal}} = 8 \text{ MHz}$
 - minimum $T_{\text{frame}} \approx 6 \text{ ms}$
 - T_{frame} could be longer if EXP > frame readout period
 - EXP can be $< T_{\text{frame}}$, since we use gating to control exposure
Aurora Mode Imaging

The time to shift and readout one image: \(~9\) ms
Exposure duration can be as long as \(~1\) second
Filter Wheel (heated)

Auxiliary Electronics PC Board

Thermoelectric Cooler

Front End Electronics PC Boards

CCD Radiation Shield
Front End Electronics Interface

- **Data[0..11]**
 - 12 bits per pixel
- **PixelClock**
 - pixel data strobe
- **FrameClock**
 - start of frame signal
- **Acquire**
 - signals start of exposure in Aurora mode
 - signals Event in Sprite mode
- **CommandData**
 - serial data interface for upload of camera parameters
- **VoltageMonitor**
 - switched analog output
- **Power**
 - dc voltages
Auxiliary Electronics Interface

- Thermistors
 - TEC hot side
 - Lens
 - Filter Wheel
 - Filter Motor

- Heater Circuits
 - Lens
 - Filter Wheel

- Photocathode PS
 - On/off control
 - Gated

- TEC Power Supply
 - On/off control

- Sun Sensor
 - Analog output

- Filter Wheel Motor
 - Stepper motor (4 phases)
Principal Camera Parameters

- Gated operation enable
- Photocathode gate open/close
- Sprite Burst Mode enable
- Set Burst mode number of images, N
- Sprite Continuous Mode enable
- Aurora Mode enable
- Dark image acquire
- Set Exposure (EXP) duration
- Set repetition (REPTIME) period